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SUMMARY

This paper presents new developments of the staggered spline collocation method for cost-e�ective
solution to the incompressible Navier–Stokes equations. Maximal decoupling of the velocity and the
pressure is obtained by using the fractional step method of Gresho and Chan, allowing the solution
to sparse elliptic problems only. In order to preserve the high-accuracy of the B-spline method, this
fractional step scheme is used in association with a sparse approximation to the inverse of the consistent
mass matrix. Such an approximation is constructed from local spline interpolation method, and represents
a high-order generalization of the mass-lumping technique of the �nite-element method. A numerical
investigation of the accuracy and the computational e�ciency of the resulting semi-consistent spline
collocation schemes is presented. These schemes generate a stable and accurate unsteady Navier–Stokes
solver, as assessed by benchmark computations. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The development of numerical methods based on B-spline methodology is motivated by the
substantial computational cost of large-eddy simulations (LES) of complex turbulent �ows.
Indeed, the large number of grid points needed in turbulent boundary layers remains one
of the principle obstacles to a wider application of LES to �ows of engineering interest.
An active part of research in LES is devoted to reducing these resolution requirements, by
the formulation of approximate wall conditions (see e.g. Reference [1]), and by the de-
velopment of highly accurate numerical methods for the precise representation of near-wall
structures.
Several works [2–4] have been devoted to the development of B-spline methods on

semi-structured embedded meshes. This technique allows a substantial reduction in the
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computational cost of a simulation by using �ne grids in physically signi�cant �ow regions
only. The use of B-splines is motivated by the development of robust and non-dissipative
LES schemes on arbitrary meshes. The conservation of physical invariants such as kinetic
energy is highly desirable for the simulation of turbulent �ows [5], and these requirements are
reproduced with di�culty by �nite-di�erence schemes on non-uniform meshes [6]. Moreover,
the resolution power of B-splines of maximum continuity allows the representation of a broad
range of scales of a turbulent �ow [3].
The work of Kravchenko et al. [3] and Kravchenko and Moin [2] has shown the high

suitability of B-spline methods for the computation of complex turbulent �ows. However the
Galerkin approximation that is employed is too CPU intensive. The method is burdened by
the cost of evaluating non-linear terms where, as observed in Reference [3], 50% of the
computational time is spent on their evaluation.
This paper represents a follow-up to the work initiated in References [7, 8] for developing

a cost-e�ective B-spline Navier–Stokes solver. The equations are discretized with the col-
location method, which allows a drastic reduction of the cost of evaluating non-linearities.
A stable approximation to the pressure is obtained by constructing staggered bases for the
velocity and pressure which are, in a sense, the B-spline equivalent to the popular staggered
�nite-di�erence discretization [9]. The time-discretization employs a fractional step scheme
[10, 11].
In association with ‘local’ (or ‘explicit’) discretizations such as �nite-di�erence or �nite-

volume approaches, fractional step techniques are widely considered as the most cost-e�ective
method for solving the Navier–Stokes equations. Indeed, they provide a maximum decoupling
of the velocity and the pressure, so that only sparse elliptic problems need to be solved at each
time-cycle. However, for ‘global’ discretizations such as B-spline methods that yield a non-
diagonal mass matrix, a straightforward application of these methods retains some coupling
between the velocity and pressure: the pressure operator associated with the projection step,
that involves the dense inverse of the mass matrix, is dense and can only be constructed
for modestly sized problems. As suggested in References [7, 8], the pressure equation can
nonetheless be solved by means of an Uzawa algorithm, but the CPU cost of this iterative
solution, even accelerated by modern Krylov subspace methods [12, 13], is prohibitively high
for large scale problems.
In order to make this B-spline method attractive with respect to CPU cost, we have made

an e�ort to modify the fractional step scheme in order to obtain a simpler linear system for the
pressure that would be sparse, and eliminate the need for Uzawa iterations. A modi�cation
of the mass matrix to get a sparse approximation to its inverse is a key element in this
endeavor.
The modi�cation of the ‘consistent approximation’, which generates the non-diagonal mass

matrix, has always been a critical issue for �nite-element type methods. A common ad hoc
simpli�cation consists in approximating the mass matrix with a diagonal matrix, usually by
summing its rows and putting the result on the diagonal (the ‘lumped mass’ approximation, see
e.g. References [14, 15]). For compressible �ow simulations, this simpli�cation is motivated
by the use of explicit time-stepping such that, when the time-derivative term is lumped,
the inversion of the consistent mass matrix is no more needed at each time cycle. This mass
lumping technique, however, diminishes the accuracy of the resulting scheme, most notably for
unsteady �ows dominated by convection e�ects [16], since this approximation is, in general,
a �rst-order in space approximation to the consistent mass matrix.
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So far, the most satisfying application of the lumping technique to incompressible �ow
computations is represented by the ‘projection 2’ scheme of Gresho [17] and Gresho and
Chan [18]. It uses a semi-consistent mass matrix approximation (SCM), i.e. the mass ma-
trix is lumped in front of the pressure gradient in the momentum equation only, while the
continuity equation is unaltered. As a consequence, the pressure operator is sparse and can
e�ciently be inverted by standard elliptic solvers. Early applications of the SCM technique
to the B-spline collocation method were reported in References [7, 8]. For low-order spline
approximations, this scheme performed accurate Navier–Stokes benchmark computations with
only a fraction of the CPU time needed by the original consistent scheme. However, due to
the crude approximation represented by the lumping of the mass matrix, the SCM scheme led
to a loss of the accuracy that would be expected for high-order B-splines.
In order to preserve, as far as possible, the high accuracy of the B-spline method, it is thus

necessary to build more accurate approximations of the consistent mass matrix than the lumped
approximation. These considerations led us in this work to the development of approximate
inverses of the mass matrix, i.e. highly-accurate sparse approximations to the inverse of the
consistent mass matrix. This concept of approximate inverse is somewhat similar to the one
developed for the iterative solution of linear systems, where the approximate inverse is an
explicit preconditioner whose application in an iterative procedure requires a sparse matrix-
vector multiplication only (see Reference [19] and references therein). The main di�erence
is that we are able to replace the solution of a mass matrix problem by a single sparse
matrix-vector multiplication, while keeping the order of accuracy of the B-splines.
For the B-spline collocation method, such sparse approximations are obtained by applica-

tion of local interpolation schemes. These schemes of quasi-interpolation were developed in
e.g. References [20–22] to build spline representation of a function from data values. The
B-spline coe�cients are not determined as the solution to a collocation system, as the consis-
tent approximation would require, but rather as the linear combination of the function values
at a small number of data points. When these data points are chosen among the collocation
points, this linear combination de�nes the entries of the approximate inverse of the mass
matrix. The number of data points a�ects the order of accuracy of the approximate inverse.
The case with a single data point corresponds to the low-order lumped approximation. The
increase in the number of data points raises the order, and a su�cient number of points yields
the order of accuracy of the consistent approximation. These approximate inverses represent
thus a high-order generalization of the mass lumping technique.
The concepts of approximate inverse and local interpolation may have important application

to numerical algorithms where a fast transformation from the physical (collocation) space
to the B-spline coe�cients space is required. Among others, we cite the development of
restriction operators for spline multigrid methods [23], and the evaluation of non-linearities
in collocation space, as in the pseudospectral method. In the present work, the use of an
approximate inverse allows us to solve the pressure equation of the Navier–Stokes scheme
with a fraction of the CPU time required by the consistent approximation, with the same
order of accuracy. The slight loss of the resolving power of the semi-consistent schemes,
caused by the replacement of the consistent mass matrix, is anyway greatly counterbalanced
by their computational e�ciency. These issues are carefully addressed here by presenting
numerical tests and Fourier analysis. The combination of these approximate inverses with
the SCM fractional-step technique allows the construction of a highly-accurate cost-e�ective
Navier–Stokes solver, as proved by the benchmark tests reported in this paper.
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2. BACKGROUND ON B-SPLINE NUMERICAL SCHEMES

2.1. Construction of B-spline bases

A spline function is a piecewise polynomial of order k (i.e. its polynomial degree is k − 1
at most) de�ned on the interval �= ]a; b[, whose derivatives at some order possess jump-
discontinuities at breakpoints �= {�i; i=1; : : : ; l+ 1} de�ned by

a= �1 ¡ �2 ¡ · · · ¡ �i ¡ · · · ¡ �l ¡ �l+1 = b (1)

In the following, we focus on the characterization of the so-called smoothest splines, which
have jump discontinuities in their k − 1 derivative, since previous studies in References [7, 8]
have assessed their superior resolving power in the collocation approach.
For the approximation to a given function f(x), the spline function f̃(x) is commonly

described in its B-representation

f̃(x)=
N∑
i=1

�iBk
i (x) (2)

where Bk
i (x) is a special spline function of order k called a B-spline which has, in particular,

the property of having compact support (see e.g. Reference [20]), and the number of the
B-splines is

N = l+ k − 1 (3)

The B-splines of order 1 are step functions de�ned by

B1i (x)=

{
1 if x ∈ [ti; ti+1]
0 otherwise

(4)

and an e�cient construction of the B-splines of order k¿2 is given by the recurrence relation
of Curry and Schoenberg (see e.g. Reference [20]):

Bk
i (x)=

x − ti
ti+k−1 − ti

Bk−1
i (x) +

ti+k − x
ti+k − ti+1

Bk−1
i+1 (x) (5)

Formulae (4) and (5) introduce the set of knots

X = {ti; i=1; : : : ; N + k} (6)

which enforce the regularity of the B-spline basis by requiring

tk+i−1 = �i for i=2; : : : ; l (7)

i.e. the knots coincide with the breakpoints in the interior of the domain.
The construction of the basis given by Equations (4)–(7) leaves freedom in the �rst k and

last k of the knots. A convenient choice for the approximation to boundary value problems
is to set these end-knots as

t1 = · · · = tk = a; tN+1 = · · · = tN+k = b (8)
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In that case, by using basic properties [20] such as that of compact support,

Bk
i (x)=0 for x =∈ [ti; ti+k] (9)

and partition of unity,

N∑
i=1

Bk
i (x)=1 for x ∈ [a; b] (10)

the spline function (2) satis�es

f̃(a)= �1 and f̃(b)= �N (11)

so that Dirichlet boundary conditions are imposed strongly.
Periodic boundary conditions are imposed by setting

tk = a (12a)

and performing a periodic extension of the interior knots (7) as

ti = ti+N−k+1 − (b− a) for i=1; : : : ; k − 1 (12b)

ti = ti−N+k−1 + (b− a) for i=N + 1; : : : ; N + k (12c)

The periodicity of the spline function is then enforced by requiring periodicity on its
coe�cients, i.e. for the last k − 1 coe�cients with indices i=N − k + 2; : : : ; N ,

�i= �i−N+k−1 (13)

A useful property is that a B-spline basis of order k can represent elements of the space
Pk(�), i.e. polynomials of degree k − 1 at most. More precisely, Lyche and Schumaker [22]
established the identity

N∑
i=1

�imBk
i (x)= xm−1; m=1; 2; : : : ; k; (14a)

where

�im=(−1)m−1 (m− 1)!
(k − 1)!  

(k−m)
i (0); with  i(x)=

k−1∏
p=1

(x − ti+p) (14b)

In the following, the superscript referring to the order of the B-splines will be dropped for
the sake of brevity.

2.2. Semi-consistent fractional step scheme

Numerical approximation to the unsteady Navier–Stokes equations for a viscous incompress-
ible �uid is performed in the domain �= ]0; 1[2. For ease of discussion, homogeneous
Dirichlet boundary conditions are imposed upon the velocity.
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In order to obtain a B-spline approximation that is not plagued by spurious pressure modes
(see e.g. Reference [14]), the staggered B-spline collocation discretization introduced in Refer-
ences [7, 8] is used. In this method, the velocity and the pressure are represented with distinct
bases as

v=
N∑

i;j=1
vi; jBi(x)Bj(y); p=

N−2∑
i;j=1

pi; jB̃i(x)B̃j(y) (15)

where {Bi(x); i=1; : : : ; N} is the velocity basis of order k with knots Xv, while the pressure
basis {B̃i(x); i=1; : : : ; N − 2} is of order k − 1 with knots Xp staggered with respect to Xv.
The equations are discretized on the collocation grid {(xi; yj); i; j=1; : : : ; N} that will be

de�ned later.
The time-integration is based on the following prototype fractional step scheme, where the

non-linear terms are discarded,

M
	U −U n


t
−K 	U +MM−1

A D̃Pn = Fn+1 (16a)

	U |@� = 0 (16b)

and

M
U n+1 − 	U

t

+MM−1
A D̃(Pn+1 − Pn) = 0 (17a)

DU n+1 = 0 (17b)

Un+1
|@� = 0 (17c)

In these equations, 
t is the time step, U and P are vectors representing the unknown spline
coe�cients of the velocity and the pressure, respectively, F is a source term, M is the (non-
diagonal) mass matrix, K is the viscous di�usion matrix, D and D̃ represent �rst derivative
operators of velocity and pressure, respectively. The prediction step (16) amounts to solving
a discrete Helmholtz equation for the provisional velocity 	U . To obviate the need of arti�cial
boundary conditions on the pressure, the projection step (17) is left written as a Div–Grad
problem (see e.g. Reference [24]) instead of casting it as a Poisson equation for the pressure
with Neumann conditions at the boundary.
In contrast to the standard B-spline discretization considered in References [7, 8], which

will be referred to as the consistent method (CM), this scheme considers a modi�cation of
the pressure gradient in Equations (16a) and (17a) by introducing the matrix M−1

A which is
the approximate inverse of the mass matrix M, in a sense to be de�ned later. The diver-
gence equation (17b) is identical for both methods, and expresses the fact that the continuity
condition be satis�ed at the inner collocation points. Note that when M−1

A =M−1, the semi-
consistent scheme (SCM) (16)–(17) reduces to the original CM scheme.
The main interest of the SCM scheme is that the projection step (17) yields the pressure

equation

AA(Pn+1 − Pn)=D 	U=
t (18)
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where the pressure operator

AA=DM−1
A D̃ (19)

is sparse when M−1
A is sparse, resulting in a pressure equation that can be e�ciently solved

by standard iterative methods for elliptic problems.
Scheme (16)–(17) was introduced under the name ‘projection 2’ by Gresho and Chan [18]

for the �nite-element method with M−1
A =M−1

L , i.e. an approximate inverse generated by the
lumped approximation which is, in general, a �rst-order approximation to the mass matrix.
We refer to References [18] and [14] for further analysis of this scheme.
The use of a highly accurate approximate inverse is motivated by investigating the truncation

error of the SCM scheme. When combining Equations (16a) and (17a) to eliminate the
provisional velocity 	U , we get

M
U n+1 −U n


t
−KU n+1 + D̃Pn+1 + ES + EA=Fn+1 (20)

where, in addition to the O(
t2) splitting error

ES =−
tKM−1
A D̃(Pn+1 − Pn) (21)

common to fractional-step schemes, the approximation error

EA=(M−MA)M−1
A D̃Pn+1 (22)

is a spatial error expressing the degree of accuracy to which MA approximates the consistent
mass matrix M. The use of an approximate inverse whose accuracy is consistent with the
B-spline discretization is thus mandatory for preserving the accuracy of the SCM scheme.

3. CONSTRUCTION OF APPROXIMATE INVERSE OF THE MASS MATRIX USING
LOCAL SPLINE APPROXIMATION

3.1. Consistent interpolation vs local interpolation

The consistent interpolation of a function f(x) consists in �nding a spline function

f̃(x)=
N∑
i=1

�i(f)Bi(x) (23)

that takes on the values of f(x) at a given set of collocation points {xj; j=1; : : : ; N}, i.e.
N∑
i=1

�i(f)Bi(xj)=f(xj); for j=1; : : : ; N (24)

This linear system takes the matrix form

	M�=F (25)

where �=(�1(f); : : : ; �N (f)); F =(f(x1); : : : ; f(xN )) and 	M=(Bi(xj))i; j= 1;:::;N is the consis-
tent, non-diagonal mass matrix of bandwidth k (for clarity, the matrix operators corresponding
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to one-dimensional spline discretization are overlined). The solution of a linear system of
equations is thus needed for determining the spline coe�cients.
In contrast, local interpolation methods were developed in e.g. References [20–22] such

that the determination of the coe�cients does not require solving a collocation system. These
methods are local in the sense that the evaluation of the coe�cients depends on the value of
the function and=or its derivatives at a small number of data points. In the following, we focus
on local schemes involving function values, i.e. schemes such that the ith spline coe�cient
is determined as

�i(f)=
kl∑

j=1
�ijf(�ij) (26)

where, for i=1; : : : ; N; {�ij ; j=1; : : : ; kl} is a given set of distinct data locations in �, kl6k
is the number of data points used for the evaluation of each spline coe�cient, and will be
referred to as the order of the local scheme, and {�ij ; j=1; : : : ; kl} are coe�cients to be
determined.
In the case where the data points are chosen from the set of collocation points, Scheme

(26) can be written in matrix form as

�= 	M−1
A F (27)

where the coe�cients {�ij} in (26) de�ne the entries of the square matrix 	M−1
A that is precisely

the approximate inverse of the consistent mass matrix 	M we are seeking. The matrix 	M−1
A

is sparse, each of its row possessing kl non-zero entries at most. Thus, the linear system
solution required by the consistent approximation is now replaced by a sparse matrix-vector
multiplication involving the same right-hand-side.

3.2. Derivation of the local interpolant

The local interpolation scheme we use for the determination of the entries of 	M−1
A is the

scheme based on point evaluations considered in Example 3.4 of Lyche and Schumaker’s
paper [22]. This construction is valid for B-spline bases of any order k, and an arbitrary
distribution of knots.
Given kl6k and some data points {�ij ; i=1; : : : N; j=1; : : : ; kl} such that {�i1; : : : ; �ikl} are

distinct for all i, the coe�cients {�ij ; i=1; : : : ; N; j=1; : : : ; kl} in (26) are determined so that
the local scheme reproduces polynomial of order kl, i.e.

f̃=f; ∀f ∈ Pkl (�); kl6k (28)

For this purpose, it is convenient to write Eq. (26) as

�i(f)=
kl∑

j=1
�ij [�i1; �i2; : : : ; �ij]f (29)

where [·; : : : ; ·]f represents the divided di�erence of f(x), de�ned by the recursion formulae
(see e.g. Reference [20])

[�i1; �i2; : : : ; �ij]f=
[�i1; �i2; : : : ; �ij−1]f − [�i2; �i3; : : : ; �ij]f

�i1 − �ij
; [�i1]f=f(�i1)
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Condition (28) amounts to representing each monomial xm−1; m=1; : : : ; kl, as

N∑
i=1

(
kl∑

j=1
�ij [�i1; �i2; : : : ; �ij] xm−1

)
Bi(x)= xm−1 (30)

By using (14), the coe�cients �ij are obtained as the solution of the lower triangular linear
system, for each i=1; : : : ; N

kl∑
j=1

�ij[�i1; �i2; : : : ; �ij]xm−1 = �im; for m=1; : : : ; kl (31)

from which the �ij can be obtained by back-solution. The values of �ij for j=1; : : : ; 4 are
given in Reference [22], and are listed here for completeness:

�i1 = 1 (32a)

�i2 = �i2 − �i1 (32b)

�i3 = �i3 − (�i1 + �i2)�i2 − �2i1 (32c)

�i4 = �i4 − (�i1 + �i2 + �i3)�i3 − (�2i1 + �i1�i2 + �2i2)�i2 − �3i1 (32d)

Due to the structure of system (31), the values of the {�ij} do not depend on kl. Thus, the
coe�cients of a scheme of order kl64 are given by the �rst kl lines in Equation (32). The
extra e�ort to determine the coe�cients of a scheme of order 5 would only be to calculate
�i5 from (31). Once the �ij are determined, the �ij can be obtained by equating (29) to (26).
Lyche and Schumaker [22] have shown that this local scheme yields an accuracy of order

kl in the maximum norm. In particular, for the case kl = k, it is thus possible to obtain a local
interpolant that preserves the order of accuracy of the consistent approximation.
Another important case occurs for kl = 2: if, to obtain the ith B-spline coe�cient, the �rst

data point �i1 is chosen to be equal to x?i de�ned as

x?i = �i2; where from (14b) �i2 =
k−1∑
p=1

ti+p=(k − 1) (33)

then �i2 = 0 in Equation (32b) for any choice of the second data point �i2. Thus, the spline
function

f̃(x)=
N∑
i=1

f(x?i )Bi(x) (34)

is a second-order approximation to f(x). This scheme is precisely the variation-diminishing
approximation of Marsden and Schoenberg (see e.g. Reference [20]), and the collocation
points (33) will subsequently be referred to as the Marsden–Schoenberg points.
A last important remark concerns the accuracy of the imposition of Dirichlet boundary

conditions with the local scheme, in the case where the end-knots are set using Equations
(8). From Equations (11) and (29), the value of the spline at the end-point x= a is

f̃(a)= �1(f); with �1(f)=
kl∑

j=1
�1j[�11; : : : ; �1j]f (35)
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where the coe�cients {�1j; : : : ; �1kl} are solution to
kl∑

j=1
�1j[�11; : : : ; �1j]xm−1 = am−1; m=1; : : : ; kl (36)

If �11 is chosen to be equal to a, the unique solution is then �11 = 1; �12 = · · · =�1kl = 0.
From Equation (35) we get f̃(a)=f(a), and correspondingly f̃(b)=f(b) at the other end-
point, showing that Dirichlet boundary conditions are satis�ed exactly just as in the consistent
approximation (Equation (11)).

3.3. Approximate inverse of the mass matrix

The local interpolant allows us to build an approximate inverse 	M−1
A of the mass matrix when

the data points {�i; j} are chosen from the set of collocation points {xi; i=1; : : : ; N}. For the
imposition of Dirichlet conditions with the end-knots (8), an additional constraint would be
to set �11 = a and �N1 = b, the choice of the remaining data points {�1j; j=2; : : : ; kl} and
{�Nj; j=2; : : : ; kl} having no consequence.
A case of special interest arises when the approximate inverse reduces to 	M−1

A =I. This ap-
proximate inverse corresponds to the mass matrix lumped with the row-sum technique widely
used in the �nite-element community (see e.g. References [14, 15]), obtained by summing
the rows of the consistent mass matrix 	M, putting the result on the diagonal and using the
property of partition of unity (10). For the spline-collocation method, the local interpolant
of order kl = 1 with �i1 = xi generates such a matrix, and thus yields �rst-order accuracy in
general. However, as shown by the variation-diminishing scheme (34), the lumped mass ma-
trix is second-order accurate on nonuniform grids (i.e. for nonuniform distributions of knots)
when the Marsden–Schoenberg collocation points (33) are used.
The latter case identi�es the Marsden–Schoenberg points as an alternative to the usual

choice of the collocation points, i.e. the location of the maximum of the B-splines. These two
de�nitions are equivalent in particular cases only, such as a periodic domain with uniform
knots. They nonetheless yield the same characterization of the �rst and last collocation points
when the end-knots (8) are used, namely x1 = a and xN = b. In the following, the Marsden–
Schoenberg points will be used as much as possible, even though no advantages have been
observed yet when local interpolants of order higher than 2 are employed.
As sketched in Figure 1, the approximate inverse generated by a local scheme of order

kl¿3 can be viewed as a high-order generalization of the mass lumping technique. Since
	M−1 is dense, the evaluation of the spline coe�cient �i(f) by the consistent approximation

involves values of f(x) at all collocation points. In contrast, the mass lumping technique
consists in identifying �i(f) to the value of f(x) at the collocation point associated with
the ith B-spline. More generally, the local approximation to �i(f) involves values of f(x)
at several collocation points, which are located in Figure 1 in the support of Bi(x). This
approximation has the e�ect of increasing the bandwidth of 	M−1

A while raising the accuracy
of the evaluation of �i(f).
Several issues have to be addressed for generating approximate inverse of practical interest.

A loss in the spatial resolution power of the spline-collocation method would predictabily
result from the replacement of the consistent mass by the local mass approximation. Further-
more, while O(N−kl ) asymptotical accuracy is assured when kl data points per coe�cient are
used, the de�nition of the local interpolant leaves freedom in their positioning. The in�uence
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Figure 1. Sketch to illustrate the approximation of a function f(x) with a B-spline basis of order k =4,
on l+1=10 equidistant breakpoints (�) with end-knots (8). The coe�cient associated to the 6th B-spline
(——) is evaluated with the values of f(x) at: all Marsden–Schoenberg collocation points (•) with the
consistent approximation, a unique collocation point (framed) with the mass lumping approximation,

and 4 collocation points (circled) when a local scheme of order kl = 4 is used.

of the location of the data points on the accuracy of the resulting local scheme is investigated
in the next section.

4. NUMERICAL RESULTS

This section is devoted to the assessment of the accuracy of the sparse approximate inverses
and the application to the Navier–Stokes equations. All computations are carried out on the
collocation grid de�ned by the Marsden–Schoenberg points (33), thus yielding second-order
accuracy to the lumped approximation of the mass matrix.

4.1. Local approximation in a one-dimensional periodic domain

It is convenient to analyze the resolution properties of the local approximation for B-spline
bases on a uniform distribution of breakpoints with periodic boundary conditions, where the
end-knots are set as (12). The investigation of the in�uence of the position of the data points
used for generating 	M−1

A is then greatly simpli�ed since, in this con�guration, the bases are
generated by translation of the same cardinal B-spline [20]. As a result, the ith Marsden–
Schoenberg point is characterized as the maximum of the spline Bi(x), i.e. for k even

x?i = ti+k=2; i=1; : : : ; N (37)

The matrix 	M−1
A is then a banded circulant matrix whose entries have the form

( 	M−1
A )ij =(m−1

A )j−imod N (38)

This con�guration will allow us to perform a modi�ed wavenumber analysis of the semi-
consistent schemes.
The in�uence of the choice of the data points on the accuracy of the resulting schemes is

performed for local interpolant of order kl = 4. For completeness, results are also provide for
the popular variation-diminishing scheme (i.e. mass lumping approximation, kl = 2). Table I
displays the various sets of data points that we consider. Those sets of points are located as
close as possible to the support [ti; ti+k] of Bi(x), in order to minimize the bandwidth of 	M−1

A .
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Table I. Description of the sets of data points used for local interpolation. The
index i refers to the collocation point associated with the ith B-spline.

Index of data points used
Set of data points for local interpolation

Set I {i}
Set II {i − 2; i − 1; i; i + 1}
Set II′ {i − 1; i; i + 1; i + 2}
Set III {i − 3; i − 2; i − 1; i}
Set III′ {i; i + 1; i + 2; i + 3}
Set IV {i − 2; i − 1; i + 1; i + 2}

Table II. Entries ( 	M−1
A )ij = m−1

j−imod N of the approximate inverse for the various sets of data points.

Order k =4 Order k =6

Set of data
points m−1

−3 m−1
−2 m−1

−1 m−1
0 m−1

1 m−1
2 m−1

3 m−1
−3 m−1

−2 m−1
−1 m−1

0 m−1
1 m−1

2 m−1
3

Set I 1 1
Set II 0 −1=6 4=3 −1=6 0 −1=4 3=2 −1=4
Set II′ −1=6 4=3 −1=6 0 −1=4 3=2 −1=4 0
Set III 1=6 −2=3 5=6 2=3 1=4 −1 5=4 1=2

Set III′ 2=3 5=6 −2=3 1=6 1=2 5=4 −1 1=4
Set IV −2=9 13=18 13=18 −2=9 3=4 −1=4 −1=4 3=4

The entries of 	M−1
A with respect to the sets of data points are given in Table II for splines

of order k=4 and 6.
Set I corresponds to the variation-diminishing scheme, while the �ve other sets use the

local interpolant of order 4.
Sets II and II′ represent the two possible choices of data points that yield approximate in-

verses with the shortest bandwidth. For the particular case of equidistant knots with periodicity
conditions considered in this section, these two sets happen to generate the same symmetric
tridiagonal matrix 	M−1

A (see Table II). In general, this property is lost when the knots are not
distinct and equally spaced. As an example, for a B-spline basis on a uniform distribution of
breakpoints with Dirichlet boundary conditions, the tridiagonality of 	M−1

A is lost at its �rst
and last k − 1 lines, due to the fact that the end-knots are identical (see Equation (8)).
Sets III and III′ correspond, respectively, to a left and right biasing of the data points

with respect to x?i . These two sets are the only ones that introduce a non-symmetric approx-
imate inverse (see Table II). As it will be seen shortly, this feature has important e�ects
on the nature of the di�erencing errors of the semi-consistent schemes generated by these
two sets.
Finally, set IV is designed to generate an approximate inverse with a sparsity pattern that

is symmetric on arbitrary grids, by not considering the datum at point x?i .
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Figure 2. Maximal error vs N , number of B-splines of order k =4, for the various approximation
methods. Local scheme with kl = 2 ( ): set I —-; local schemes with kl = 4 (◦) : set II – – –, set III

........, set IV —-·—- ; consistent approximation ——.

The �rst numerical test concerns the interpolation of the periodic function

f(x)= sin(10�x) + cos(2�x + 2); in �= ]0; 1[ (39)

We recall that the consistent approximation requires a linear system solution, while the
semi-consistent schemes require a single sparse matrix-vector multiplication. The maximal
value of the error, sampled on a �ne grid of 1001 equidistant points, is displayed in Figure 2
for splines of order k=4. The poor accuracy of the lumping approximation is obvious, yielding
second-order accuracy. The order of accuracy of the consistent approximation is recovered for
all the local schemes of order 4. These results show the importance of data point positions.
Not surprisingly, the lowest error of the local schemes is obtained with set II. Note also
that for a moderate spatial resolution (N625), sets III and IV yield results inferior to those
obtained with the lumping approximation. For this interpolation test, sets III and III′ give
identical results.
For completeness, Figure 3 displays analogous results obtained with splines of order 6.

As in the previous case, fourth-order accuracy is obtained with local schemes of order 4
and, again, set II displays the lowest magnitude error. The results obtained with these local
schemes are, of course, far from the 6th-order accuracy of the consistent approximation. This
rate of convergence would nonetheless be obtained with local schemes of order 6.
A classical evaluation of the resolving abilities of a numerical scheme is given by

the Fourier analysis of di�erentiating errors (e.g. References [25, 26]). A complete analy-
sis of the resolving power of (consistent) B-spline methods is performed by Kwok et al.
[27]. In the following, we focus on investigating the resolving power of the semi-consistent
approximation to the �rst derivative, since the gradient of the pressure only is altered by the
introduction of the approximate inverse in the SCM fractional scheme (16)–(17).
Following Kwok et al. [27], we consider the eigenvalue problem

u′= �u in �= ]− �; �[ (40)
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Figure 3. Maximal error vs the number of points N with splines of order k =6. See
the caption of Figure 2 for the labelling.

with periodic boundary conditions, to be solved on a uniform mesh with grid spacing h=2�=N .
The discretization of this problem by the consistent approximation leads to the generalized
eigenvalue problem

	D�= � 	M� (41a)

where 	D=(B′
i (x

?
j )) is the �rst derivative collocation operator. Correspondingly, the

semi-consistent discretization leads to

	M−1
A

	D�= �� (41b)

The eigenvalue spectrum of (41), that reads

�= i!′(!); i2 = − 1
with != jh for j=0; : : : ; N − 1, corresponds to the B-spline di�erencing error, which has to
be compared with exact di�erentiation, �= i!.
We recall that the real and complex part of the modi�ed spectrum !′ are, respectively,

associated with errors of dispersive and dissipative nature. Consistent B-spline approximations
yield centered di�erencing schemes (i.e. 	M and 	D are symmetric) with purely real !′, yielding
thus errors of dispersive nature only. Similarly, semi-consistent approximations with sets I,
II and IV are purely dispersive since 	M−1

A
	D is symmetric. On the contrary, the biasing of

the data points in sets III and III′ generates forward and backward di�erencing schemes,
respectively, yielding thus modi�ed wavenumber with non-zero imaginary part.
For the various discretizations with splines of order k=4 and 6, respectively, Figures 4

and 5 sketches the real part of the modi�ed wavenumber spectrum !′(!) versus the wavenum-
ber !. As expected, the mass lumping approximation (set I) degrades the resolving power
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Figure 4. Real part of modi�ed wavenumber of the �rst derivative yielded by the di�erent methods for
splines of order k =4. Local scheme with kl = 2: set I- - - -; local schemes with kl = 4: set II– – – –,

set III · · · · · ·, set IV —·—; consistent scheme —–; exact .
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Figure 5. Real part of modi�ed wavenumber of the �rst derivative for splines of order
k =6. See the caption of Figure 4 for the labelling.

compared to the consistent approximation: as an example, set I with k=4 yields only the re-
solving power of the common second-order centered �nite di�erencing. For the local schemes
of order 4, the location of the data points has a great in�uence on their resolving ability,
yielding very disparate wavenumber plots. It is particularly striking that set IV gives lower
resolving power than even the lumped mass approximation.
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Figure 6. Real part (left) and imaginary part (right) of the modi�ed wavenumber
for: local scheme with set III, k=6—; local scheme with set III; k=4 · · · · · ·;

upwind scheme: – – – –; Quick scheme — — —; exact .

Table III. Resolving e�ciency r	 of the �rst derivative for the various approximations.

Order k =4 Order k =6

Schemes 	=0:1 	=0:01 	=0:001 	=0:1 	=0:01 	=0:001

Consistent 0.59 0.36 0.20 0.73 0.55 0.39
Set I 0.25 0.08 0.02 0.21 0.06 0.02
Set II 0.44 0.24 0.13 0.40 0.21 0.12
Set III 0.31 0.17 0.09 0.29 0.15 0.09
Set IV 0.27 0.14 0.08 0.26 0.14 0.08

The imaginary part of !′(!) is displayed in Figure 6 for the schemes obtained with set
III and, for comparison purpose, for the �rst-order upwind biased �nite di�erencing and the
second-order Quick scheme [28]. For completeness, we have also plotted the corresponding
real part. This �gure shows that numerical dissipation is introduced in the semi-consistent
schemes with sets III and III′, with a signi�cant portion of high wavenumbers being arti�cially
damped, as observed with the upwind �nite di�erence schemes.
A more quantitative measurement of the resolving ability of a scheme is the resolving

e�ciency introduced by Lele [26]. The resolving e�ciency r	 is de�ned as the fraction of
wavenumbers ! verifying

|!′(!)−!|
!

6	 (42)

for a given value of 	, i.e. the fraction of the entire range of wavenumbers that are accurately
represented within a relative error tolerance of 	. The resolving e�ciency r	 of the various
schemes is given in Table III for representative values of 	. We observe that this measure-
ment gives, once more, set II as the most accurate of the local schemes. In particular, for
splines of order k=4, set II recovers up to 76; 67 and 65% of the resolved fraction r	 of
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the consistent approximation for 	=10−1; 10−2 and 10−3, respectively. In comparison, the
lumping approximation recovers only 42; 22 and 10% of this resolved fraction.
In summary, accurate approximate inverses that preserve the order of accuracy of the con-

sistent approximation can be generated when a su�cient number of data points is used. The
location of these data points is nonetheless of crucial importance. These numerical tests have
found the best position of these data points on a periodic uniform grid to be set II. The
resolution properties of the consistent approximation are, nonetheless, not fully recovered by
the local schemes. The marginal loss in accuracy is greatly counterbalanced by their much
lower computational cost, as will be illustrated in the next section.
In the case of Dirichlet boundary conditions, set II is used as a template for building ap-

proximate inverses of order kl = 4 on a uniform distribution of breakpoints. The local approxi-
mation for coe�cients with indices i= k; : : : ; N −k+1 is performed with this set, generating a
centered tridiagonal approximation as in the periodic case. A modi�cation has to be performed
for the �rst and last k−1 de�cient B-splines, i.e. those having multiple knots in their support.
The �rst and last coe�cients use the datum at the end-point a and b, respectively, leading to
the exact imposition of the Dirichlet conditions. For the remaining B-spline coe�cients with
indices i=2; : : : ; k − 1 and i=N − k; : : : ; N − 1, we use the collocation points with indices
{i−1; i; i+1; i+2} and {i−2; i−1; i; i+1}, respectively. This distribution of data points will
be used for the remaining part of the paper.

4.2. Semi-consistent approximation of the Div-Grad problem

We are now ready to describe the semi-consistent approximation (SCM) of the projection
step (17), by considering as model equations the Div-Grad problem:


 v+∇p= f in �= ]0; 1[2 (43a)

∇ · v=0 in �= ]0; 1[2 (43b)

v= g on @� (43c)

This new discretization follows essentially along the lines of the consistent method (CM)
introduced in References [8, 9]. Equations (43a) and (43b) are evaluated on the (N − 2)×
(N − 2) inner collocation points, while the remaining boundary points are used for the de-
termination of the boundary conditions (43c). The discretization of the divergence equation
(43b) is identical for both methods and reads in matrix form:

DU =G (44)

where the velocity coe�cients determined from the boundary conditions are put in the right-
hand side (RHS).
The SCM approximation to Equation (43a) is now described with some details related

to the imposition of non-homogeneous boundary conditions. For this purpose, we denote by
II the set of indices of collocation points in the interior of domain, and correspondingly
IB refers to the indices of the boundary nodes. The discretization of Equation (43a) at the
interior collocation point (xi; yk) is



∑

(j;l)∈II

MA
i; k; j; lUj; l +

∑
(j;l)∈II

d̃i; k; j;lPj; l=Fi; k (45a)
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where {d̃i; k; j; l} are the gradient coe�cients of the pressure spline, and

Fi; k = f(xi; yk)− 

∑

(j;l)∈IB

MA
i; k; j; lUj; l (45b)

corresponds to a RHS augmented with boundary velocity coe�cients. The matrix form of
(45a) reads


U +M−1
A D̃P=M−1

A F (46)

where M−1
A is constructed from the tensor product of one-dimensional matrices 	M−1

A in each
spatial direction, which use the distribution of data points for Dirichlet conditions described
in the previous section.
On the other hand, the entries {MA

i; k; j; l} in Equation (45b) need to be determined for the
imposition of non-homogeneous boundary conditions. For this purpose, the sum in (45b) is
expanded as ∑

(j;l)∈IB

MA
i; k; j; lUj; l=

∑
(j;l)∈IB

	MA
i; j

	MA
k; lUj; l (47)

by using tensor product properties. For j=1; : : : ; N , the coe�cients { 	MA
i; j; i=1; : : : ; N} in

the x-direction are then obtained by solving the one-dimensional problems

	M−1
A xj= �j; with �j=(�j;m; m=1; : : : ; N ) (48)

giving as solution xj=( 	MA
i; j; i=1; : : : ; N ). An analogous procedure is performed for deter-

mining the coe�cients in the y-direction.
Equations (44) and (46) yield the pressure equation

1


AAP=

1


DM−1

A F −G (49a)

where the sparse pressure operator is

AA=DM−1
A D̃ (49b)

As in the CM discretization [7, 8], this operator displays only one zero eigenvalue, show-
ing that no spurious pressure modes occur in the SCM discretization. Furthermore, all other
eigenvalues are distinct with negative real part, and the condition number scales like N 2 on
uniform grids.
Raising the order of the approximate inverse increases the number of non-zero entries of AA.

In two dimensions, when a natural ordering of the unknowns is used, a modi�cation of the
block structure of AA is observed. As an illustration, Figure 7 compares the structure of
pressure operators generated by the lumping approximation and the approximate inverse of
order 4. These operator have similar block-structured pattern, where the 11× 11 blocks are
more or less �lled according to the order of the approximate inverse. For splines of order 4,
we observe that an approximate inverse of order 4 doubles the number of non-zero entries
of the pressure operator compared to the lumped mass approximation. Correspondingly, an
increase of 70% of the entries is observed for splines of order 6.
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Figure 7. Sparsity pattern of AA on a 13 × 13 uniform grid for splines of order k =4, generated with
the mass lumping approximation (left) and the approximate inverse of order 4 (right).

The semi-consistent method is now evaluated against the consistent method by solving
numerically problem (43) with 
=1, for the solution

v= rot sin 4�x sin 4�y; p= cos 4�x cos 4�y

on a uniform distribution of knots. For comparison with results obtained in References [7, 8],
the collocation points are set as the location of the maxima of the velocity B-splines. The
maximum error on the �rst-component of the velocity u and the pressure, sampled on a
300× 300 uniform grid, is reported in Figure 8. For splines of order 4 (Figure 8(a)), the
use of an approximate inverse of order 4 maintains the order of accuracy of the consistent
approximation, namely O(N−4) for u and O(N−2) for p. It is striking to observe that the
magnitude of the error on p is almost identical for both schemes, while the velocity errors
of the SCM scheme are only marginally higher. The latter is certainly the consequence of
the inferior resolving power of the semi-consistent approximation that we observed in Section
4.1. As it would be expected, the 6th-order accuracy on u displayed in Figure 8(b) by the
CM scheme with splines of order 6 is not recovered by the approximate inverse of order 4,
and a fourth-order convergence rate is observed in this case.
It is valuable to compare the CPU cost required by the iterative solution of the CM and

SCM equations. This comparison is restricted to the case k=4, for which both methods
display a similar asymptotic order of accuracy. To give a fair evaluation, both systems are
solved by similar iterative techniques with the error tolerance (i.e. the l2 norm of the discrete
divergence (44)) set to 	=10−8, and are initialized with the initial guess set to zero.
Since the pressure operator of the CM discretization is dense and thus cannot be stored,

the equations are solved by the Uzawa algorithm developed in References [7, 8], which is
accelerated by the Bi-CGSTAB method (see e.g. References [12, 13]). The preconditioner of
this system is AL=DM−1

L D̃, i.e. a SCM pressure operator where the lumping approximation
is used. The use of this preconditioner has the e�ect to make the number of Uzawa iterations
independent of the mesh size. Each step of the Uzawa algorithm requires inversions of the
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Figure 8. Solution of the Div–Grad problem with (a) splines of order 4, and (b) splines of order 6.
Maximum error on u ◦—◦, p +—+, CM approximation; maximum error on u ◦−−−◦; p +−−−+,

SCM approximation with approximate inverse of order 4.

consistent mass matrix and the preconditioner. These problems are respectively solved by a
direct method and the Bi-CGSTAB algorithm with ILU(0) preconditioning.
The SCM system precludes the use of Uzawa iterations, resulting in a far less cumbersome

solution procedure. The pressure equation (49) is solved with the same Bi-CGSTAB algorithm
used for inverting the preconditioner AL of the CM system. The velocity is then recovered
by using Equation (46).
The computational e�ciency of the methods is compared in Figure 9, where the CPU cost

of the iterative solution of the linear systems is plotted against the maximal error obtained
on the velocity and the pressure. The SCM method requires only a fraction of the CPU time
of the CM method to reach the same level of accuracy: we observed here that the ratio is
more than 25 for both velocity and pressure. Intuitively, these CPU savings can be understood
when observing that the computational cost of the solution of the SCM pressure equation is
roughly equivalent to a single preconditioner solve of the CM solution procedure. The ratio
of savings is thus proportional to the number of Uzawa iterations required for convergence.
Moreover, since it has been observed in References [7, 8] that the number of Uzawa iterations
is independent of the grid size, but increases with the order of the B-splines, the SCM solution
method would become more attractive as the order of the discretization is raised.

4.3. Navier–Stokes results

The SCM method is now applied to some benchmark Navier–Stokes applications. These
important tests assess (a) the high spatial accuracy of the Navier–Stokes solver and (b) its
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Figure 9. CPU time observed for the solution of the Div–Grad problem as a function of the maximal
error for splines of order k =4: u ◦—◦, p +—+, CM approximation; u ◦−−−◦, p +−−−+, SCM

approximation with approximate inverse of order 4.

robustness for unsteady computations. The time-integration is based on the semi-implicit
scheme (16)–(17), with second-order backward-di�erentiation of the time-derivative and
Adams–Bashforth discretization of the non-linear term written in the convective form. In
association with the CM and SCM (with M−1

A =M−1
L ) discretizations, this fractional-step

scheme yields second-order time accuracy for both velocity and pressure [7, 8].
The spatial accuracy that is expected from the SCM scheme deserves some comments. When

applied to di�erential problems, the collocation method we use, namely the smoothest spline
collocation method, yields a suboptimal rate of convergence, which is generally O(Nd−k) for
a d-order problem when B-splines of order k are employed (see e.g. References [7, 8, 29]).
Since Equations (16) represents a Helmholtz problem for the provisional velocity, O(N 2−k)
accuracy is expected for this quantity with velocity B-splines of order k. On the other hand,
from the results of the previous section, it can be inferred that the SCM approximation for
the projection step with an approximate inverse of order kl6k yields O(N−kl ) accuracy for
the velocity and O(N−min{kl ;k−2}) accuracy for the pressure. As a result, the combination of
both steps would yield a rate of convergence equal to min{kl; k − 2} for both velocity and
pressure. Hence, in order to obtain a fourth-order accurate Navier–Stokes solver, B-splines of
order k=6 are used, with the approximate inverse of order kl = 4 described in the previous
sections. Note that a similar rate of convergence would have been obtained with the CM
fractional step scheme using B-splines of the same order.
The �rst test concerns the validation of the spatial accuracy of the SCM scheme on a

uniform grid. For this purpose, we consider the steady solution in �= ]− 1; 1[2

v= rot sin �x sin �y; p= 1
4 (cos 2�x cos 2�y) + 10(x + y)
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Figure 10. Spatial error on u (◦——◦) and p (+——+) obtained on the steady state solution of the
Navier–Stokes equations; · · · · · ·: reference line of slope −4.

Figure 11. Time evolution of the kinetic energy in the driven cavity at Re=12000 computed by the SCM
fractional-step scheme on a 65× 65 grid with 
t=5× 10−3.

from which the source term and the boundary conditions of the Navier–Stokes equations
are de�ned. For the Reynolds number Re=100, Figure 10 displays the normalized l2 errors
obtained when the steady-state is reached. This �gure con�rms that the method is indeed
fourth-order accurate for both velocity and pressure.
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The second test illustrates the accuracy and stability of the method for computing unsteady
solutions. We consider the computation of the periodic �ow in the regularized driven cavity
at Re=12; 000, taking as a reference the spectral computation of Shen [30] performed with
65 Chebyshev polynomials in each direction and the time step 
t=5× 10−3. For comparison
purpose, the SCM computation uses the same discretization parameters, with a similar grid
re�ned near the boundary by a Chebyshev distribution of knots. The initial condition is de�ned
as the steady �ow at Re=10; 000. Figure 11 displays the time-evolution of the kinetic energy
on nearly half a million time-steps. The periodic state is asymptotically reached with the same
period T =3:085±
t measured in References [30]. This result shows the ability of the SCM
method to conserve kinetic energy on a long time integration, and to reproduce spectral results
with a similar coarse spatial resolution.

5. CONCLUDING REMARKS

The use of highly-accurate approximate inverses in association with the SCM fractional step
scheme led to the development of a Navier–Stokes solver that preserves the accuracy of the
B-spline in a cost-e�ective way. The high computational interest of the fractional step method
is indeed recovered: the full decoupling of the velocity and pressure allows the solution to
sparse elliptic problems only at each time-cycle.
The principle of the SCM scheme has a universal appeal that should not be restricted to

the B-spline discretization used here: indeed, it has been initially proposed by Gresho and
Chan [18] for the �nite-element method in association to mass matrix lumping. In this paper,
the introduction of sparse approximate inverses of the mass matrix has extended the latter
scheme to higher-order discretizations. These approximate inverses have been constructed by
application of local (or quasi-) interpolation schemes, which are mathematical tools borrowed
from the spline interpolation theory. However, since their construction is based upon polyno-
mial properties (see Equation (28)), we may believe that suitable sparse approximate inverses
can be constructed for other piecewise polynomial bases such as spectral h=p elements [31],
and alternate approximation methods such as the Galerkin method.
This SCM Navier–Stokes solver should be the building block for performing complex

�ow simulations with multivariate splines of wider �exibily than tensor-product B-splines,
enabling approximations over arbitrary geometries and local re�nement properties that are
highly attractive for wall-bounded turbulent �ow simulations. The development of accurate
local interpolants and sparse approximate inverses represents a key element into this endeavor.
In this respect, we refer to [32] where quasiinterpolation schemes are discussed for bivariate
spline spaces over triangulations that display the aforementioned properties.
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